Oscillation of second-order difference equations
نویسندگان
چکیده
منابع مشابه
Oscillation of second order nonlinear neutral delay difference equations
In this paper sufficient conditions are obtained for oscillation of all solutions of a class of nonlinear neutral delay difference equations of the form ∆(y(n) + p(n)y(n−m)) + q(n)G(y(n − k)) = 0 under various ranges of p(n). The nonlinear function G,G ∈ C(R,R) is either sublinear or superlinear. Mathematics Subject classification (2000): 39 A 10, 39 A 12
متن کاملOscillation criteria for second-order linear difference equations
A non-trivial solution of (1) is called oscillatory if for every N > 0 there exists an n > N such that X,X n + , 6 0. If one non-trivial solution of (1) is oscillatory then, by virtue of Sturm’s separation theorem for difference equations (see, e.g., [S]), all non-trivial solutions are oscillatory, so, in studying the question of whether a solution {x,> of (1) is oscillatory, it is no restricti...
متن کاملSome Oscillation Results for Second Order Neutral Type Difference Equations
This paper is concerned with the oscillatory behavior of second order neutral difference equations. Four oscillation theorems for such equations are established and examples are given to illustrate the results. Mathematics subject classification (2010): 39A11.
متن کاملOscillation theorems for second-order nonlinear delay difference equations
By means of Riccati transformation technique, we establish some new oscillation criteria for second-order nonlinear delay difference equation ∆(pn (∆xn) ) + qnf(xn−σ) = 0, n = 0, 1, 2, . . . ,
متن کاملOscillation of Higher-order Delay Difference Equations
where {pi(n)} are sequences of nonnegative real numbers and not identically equal to zero, and ki is positive integer, i = 1,2, . . . , and is the first-order forward difference operator, xn = xn+1− xn, and xn = l−1( xn) for l ≥ 2. By a solution of (1.1) or inequality (1.2), we mean a nontrival real sequence {xn} satisfying (1.1) or inequality (1.2) for n ≥ 0. A solution {xn} is said to be osci...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Journal of Nonlinear Sciences and Applications
سال: 2017
ISSN: 2008-1898,2008-1901
DOI: 10.22436/jnsa.010.03.32